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Abstract

We study optimal reinsurance in the framework of stochastic game theory, in which there is an insurer
and two reinsurers. A Stackelberg model is established to analyse the non-cooperative relationship
between the insurer and reinsurers, where the insurer is considered as the follower and the reinsurers
are considered as the leaders. The insurer is a price taker who determines reinsurance demand in
the reinsurance market, while the reinsurers can price the reinsurance treaties. Our contribution is
to use a Nash game to describe the price-competition between two reinsurers. We assume that one
of the reinsurers adopts the variance premium principle and the other adopts the expected value
premium principle. The insurer and the reinsurers aim to maximize their respective mean-variance cost
functions which lead to a time-inconsistency control problem. To overcome the time-inconsistency issue
in the game, we formulate the optimization problem of each player as an embedded game and solve it
via a corresponding extended Hamilton-Jacobi-Bellman equation. We find that the insurer will sign
propositional and excess loss reinsurance strategies with reinsurer 1 and reinsurer 2, respectively. When
the claim size follows exponential distribution, there exists a unique equilibrium reinsurance premium
strategy. Our numerical analysis verifies the impact of claim size, risk aversion and interest rates of the
insurer and reinsurers on equilibrium reinsurance strategy and premium strategy, which can help to
understand competition in the reinsurance market.
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1 Introduction

Reinsurance is an important tool for insurers to transfer risk and improve underwriting capabilities.
Research focused on the issue of optimal insurance/reinsurance can be traced back to Borch (1960a), in
which the author showed that the stop-loss reinsurance is the optimal under the criterion of minimizing
the variance of an insurer’s retained loss and the reinsurance premium is calculated according to the
expected value principle. In Arrow (2001), the author obtained the same result by maximizing the
expected utility of the final wealth of a risk-averse insurer. Thereafter, many scholars began to study
this problem under different assumptions on risk process, reinsurance premium principle, objective
function, etc. One may refer to relevant works including L. Bai & Guo (2008), Kaluszka (2004), and Cai
& Tan (2007). It should be pointed out that these studies mainly focused on the a market with only
one insurer and one reinsurer. However, it is common in practice that an insurer can transfer risk to
multiple reinsurance companies. Since reinsurers choose different premium principles and have different
risk tolerances, they participate in the reinsurance treaty with different coverage levels. Thus, some
researchers began to study the optimal reinsurance plan in the presence of multiple reinsurers. In a static
one-period risk modelling setup, there are plenty of studies investigating optimal reinsurance problems
between one insurer and two reinsurers by considering different reinsurance price principles and criterion
of optimization (see Asimit et al. (2013), Chi & Meng (2014), Cong & Tan (2016), Boonen et al. (2016b)
and Boonen & Ghossoub (2020)). Stochastic control theory has also been widely used to solve such
optimal reinsurance problems. For example, Meng et al. (2016) studied an optimal reinsurance problem
for an insurer, who aims to minimize the probability of ruin by partially transferring the insurable risk
to two reinsurers.

It is worth noting that the aforementioned works adopt only the insurer’s perspective. The reinsurance
premium was treated as a fixed constant or a predetermined function. However, reinsurers can also
adjust their reinsurance premium according to the insurer’s reinsurance plan. The interaction between
insurers and reinsurers is intensively discussed in the literature by using game theory, and it can be
described as either a cooperative game or a non-cooperative game. In the cooperative games category,
Borch (1960b) studied optimal reinsurance contracts within the context of bargaining games and found
the Nash bargaining solution. Thereafter, Lemaire (1991), Aase (2009), Boonen et al. (2016a), and L. Bai
et al. (2017) followed this direction and studied various reinsurance problems. In the non-cooperative
games category, the Stackelberg model is an important method to describe the relationship between
insurers and reinsurers. It can be dated back to Von Stackelberg (1934), in which the authors formulated
a strategic game with the leader firm moving first and the follower firm moving second. Gerber (1984)
used the notion of Stackelberg equilibria to study chains of reinsurance in a static framework. In the
Stackelberg game established in Morozov (1998), the insurer is the follower and chooses the loss-ratio
limit, and the reinsurer plays the role of leader and chooses the cost of the reinsurance policy. Chen
& Shen (2019) studied the stochastic Stackelberg differential reinsurance game with the reinsurer as
a leader and the insurer as a follower, and obtained time-consistent equilibrium strategies under the
time-inconsistent mean-variance framework. In Y. Bai et al. (2020), the authors incorporated the
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unequal status between the insurer and reinsurer due to the issues of asymmetric information into a
Stackelberg stochastic differential reinsurance-investment game problem.

To the best of our knowledge, the discussion on multiple reinsurers and potential competition between
each other, which are essential issues in practice, are missing in the literature. To fill up this gap, in
this paper, we establish a Stackelberg model between one insurer and two reinsurers who compete on
price, and study the optimal reinsurance policy in a market equilibrium. We adopt the continuous-time
mean-variance criterion, which incorporates the trade-off between risk and return for each company.
The mean-variance analysis developed in Markowitz (1952) provides a fundamental basis for portfolio
construction in a single period, and has long been recognized as the cornerstone of modern portfolio
theory. After Markowitz’s pioneering work, the mean-variance model was soon extended to multiperiod
portfolio selection; see, for example, Samuelson (1975), Hakansson (1971), and Dumas & Luciano
(1991). Since the mean-variance model exists as a non-linear function of the expected value of terminal
wealth, the Bellman optimality principle is not applicable for dynamic mean-variance problems, and
the time-inconsistency issue rises. Our paper faces the same time-inconsistency issue. The mainstream
method of dealing with time-inconsistent problems was proposed by Strotz (1956). Thereafter, Basak &
Chabakauri (2010) solved the dynamic mean-variance portfolio problem and derived its time-consistent
solution using dynamic programming. Björk & Murgoci (2014) and Björk et al. (2017) developed a
theory for a class of time-inconsistent stochastic control problems in discrete-time and continuous-time
models. They studied these problems by viewing them within the game-theoretic framework and seeking
subgame perfect Nash equilibrium points. The presenting paper follows this approach. Precisely, we
consider three embedded games for the insurer and two reinsurers, and each of the three embedded
games is played by the future incarnations of the players. Then, we obtain three systems of extended
Hamilton-Jacobi-Bellman (HJB) equations and find the equilibrium strategies and equilibrium value
function.

In this paper, the relationship between the insurer and reinsurers in the Stackelberg model is
hierarchical. The reinsurers, as the leaders in this model, have the right to determine the reinsurance
premium. The representative insurer, as the follower, can only accept the reinsurance premium requested
by reinsurers and determine the loss ceded to the reinsurers. In addition, we assume that the two
reinsurers apply different premium principles, which are the variance premium principle and expected
value premium, to stand for different kinds of reinsurance companies and consider their competition
on price, which has never been considered in the prior literature. Thus, we first find the equilibrium
reinsurance strategies for the insurer under the premiums given by the two reinsurers. Then, we consider
the price competition between two reinsurers when the insurer applies its equilibrium reinsurance
strategy, which can be explained by the model proposed by Bertrand (1883). For each reinsurer, we
obtain the equilibrium premium strategy when the other reinsurer’s premium is given and then find the
equilibrium strategy for price competition. Finally, by substituting the strategies of the two reinsurers
into the insurer’s reflection function, we obtain the equilibrium reinsurance strategies of the insurer.
Our conclusion can lay a foundation for research about extension to multiple reinsurance companies.
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The remainder of the paper is organized as follows. Section 2 establishes the model dynamics. In
section 3, we address the time-inconsistency issue and obtain the extended HJB equation. We solve
the extended HJB equation of the insurer and obtain the equilibrium reinsurance strategy of the
insurer. In section 4, we present an example and find the unique equilibrium reinsurance price strategy
for two reinsurers under exponential claims. Section 5 furthers our analysis numerically when given
exponentially distributed claims. Section 6 concludes the paper. All technical proofs are relegated to
Appendix A.

2 The Model

Consider an insurance market including one primary insurer and two reinsurers. We use a complete
filtered probability space (Ω,F , {Ft}t∈[0,T ],P) to model the insurance market, where T < ∞ is the
terminal time of decision making, P is a real-world probability measure, and {Ft}t∈[0,T ] is a right-
continuous and P-complete filtration that contains the available information up to time t. Throughout
this paper, we use E[·] to define the expectation under P. The number of individual claims occurring
within the time horizon [0, t] is modelled by the homogeneous Poisson process {N(t)}t∈[0,T ] with
intensity λ > 0. For i = 1, . . . , n, random variables Yi ∈ L

2
+ denote the ith claim size, and Y1, Y2, . . . ,

are positive independent and identically distributed. Moreover, we assume that {N(t)}t∈[0,T ] and
{Yi}i=1,2,... are stochastically independent, and then the compound Poisson process

∑N(t)
i=1 Yi is the size

of the total claim that occurred up to time t. The compound Poisson process is commonly used in the
insurance literature to formulate the claim size. The filtration {Ft}t∈[0,T ] is generated by {N(t)}t∈[0,T ]
and {Yi}i=1,2,... in the usual way. Denote F (·) as the common cumulative distribution function (CDF)
of Yi, i = 1, 2, . . . . Assume aY := E[Y ] =

∫
R+ y dF (y) <∞ and σ2Y :=

∫
R+ y2 dF (y) <∞, that is, Yi

has finite first and second moments.

The occurrence time of the i-th claim is defined as Ti = inf{t ≤ T,N(t) ≥ i}. For i = 1, 2, . . . , given
the occurrence time Ti and the severity of the claim Yi, the insurer will cede l1(Ti, Yi) and l2(Ti, Yi)
to reinsurer 1 and reinsurer 2, respectively, where lj : [0, T ]× R+ → R+ is the indemnity function of
reinsurer j, j = 1, 2. Consequently, the insurer retains the loss Yi − l1(Ti, Yi)− l2(Ti, Yi), i = 1, 2, . . . .
We use Poisson random measures to express the aggregate claims and denote the Poisson random
measure by N(dt, dy) with the compensator v( dy) dt := λ dF (y) dt. Thus, the severity of the aggregate
claim at time t is

∑N(t)
i=1 Yi =

∫ t
0

∫
R+ yN(ds, dy), and it has the expected value

E

N(t)∑
i=1

Yi

 = E
[∫ t

0

∫
R+
yN(ds, dy)

]
=

∫ t

0

∫
R+
yv( dy) ds = λaY t
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Furthermore, the losses covered by reinsurer j = 1, 2 and the insurer can be written as

N(t)∑
i=1

lj (Ti, Yi) =

∫ t

0

∫
R+
lj(s, y)N(ds, dy), j = 1, 2,

N(t)∑
i=1

(Yi − l1(Ti, Yi)− l2(Ti, Yi)) =

∫ t

0

∫
R+

(y − l1(s, y)− l2(s, y))N(ds, dy).

We suppose that the insurer adopts the expected value premium principle with constant safety
loading θ > 0, and then the insurer will receive an instantaneous premium flow at the rate of
c := (1 + θ)λaY = (1 + θ)

∫
R+ yv(dy). In contrast, the two reinsurers charge reinsurance premiums

independently through different premium principles. We assume that reinsurer 1 adopts the mean-
variance premium principle and receives instantaneous premium flow at the rate of

p1(t) =

∫
R+
l1(t, y)v(dy) + ξ1(t)

∫
R+
l21(t, y)v(dy),

where ξ1(t) is the security loading, and reinsurer 2 adopts the expected-value premium principle with
the instantaneous premium rate

p2(t) := (1 + ξ2(t))

∫
R+
l2(t, y)v(dy),

where ξ2(t) is the security loading. In the present work, we assume that the reinsurance premium
principles are fixed, while the reinsurers can adjust the reinsurance price by changing the security
loadings. Thus, for j = 1, 2, the choices on ξj(t) reflect the attitude of the insurer j toward the risk
ceded from the insurer and the competition with the other reinsurer. In the rest of the paper, we call
ξ1(t) and ξ2(t) the reinsurance premium strategies. Furthermore, we assume that ξ1(t) ∈ [ θaY

σ
2
Y

, ηaY
σ
2
Y

] and
ξ2(t) ∈ [θ, η], which ensure reinsurance price non-arbitrage and coverage that is not unduly expensive.
After paying for the reinsurance contracts, the net premium rate received by the insurer becomes
c− p1(t)− p2(t).

Denote by xI0 > 0, xR1
0 > 0 and xR2

0 > 0 the initial assets of the insurer and two reinsurers, respectively.
The insurer and the reinsurers receive credit (resp. debit) interest from their positive (resp. negative)
surpluses at interest rates ρI(t), ρR1(t) and ρR2(t), respectively. Assume that the three interest rates
are positive, bounded and deterministic. Thus, the surplus process for insurer isdXI(t) = [c− p1(t)− p2(t) + ρI(t)XI(t)] dt−

∫
R+ (y − l1(t, y)− l2(t, y))N(dt,dy),

XI(0) = xI0.
(1)

The two reinsurers have surplus processesdXR1(t) = [p1(t) + ρR1(t)XR1(t)] dt−
∫
R+ l1(t, y)N(dt,dy),

XR1(0) = xR1
0 ,

(2)

and dXR2(t) = [p2(t) + ρR2(t)XR2(t)] dt−
∫
R+ l2(t, y)N(dt,dy),

XR2(0) = xR2
0 .

(3)
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Throughout this paper, we refer to {l1, l2} := {l1(t, y), l2(t, y)}
(t,y)∈[0,T ]×R+ as one reinsurance strategy

for the insurer, and ξj := ξj(t)t∈[0,T ] is a reinsurance premium strategy for the reinsurer j, j = 1, 2. In
the following, we define admissible strategies.

Definition 2.1. A market strategy {l1, l2, ξ1, ξ2} is said to be admissible if:

(i) l1 and l2 are non-negative F-predictable processes such that l1(t, y) + l2(t, y) ∈ [0, y] for (t, y) ∈
[0, T ]× R+;

(ii) ξ1 and ξ2 are F-predictable processes such that ξ1(t) ∈ [ θaY
σ
2
Y

, ηaY
σ
2
Y

] and ξ2(t) ∈ [θ, η] for t ∈ [0, T ];

(iii) associated with {l1, l2, ξ1, ξ2}, the surplus processes (1), (2) and (3) have unique strong solu-
tions XI(·), XR1(·) and XR2(·), respectively, which are càdlàg, F-adapted processes satisfying
E[supt∈[0,T ] |Xk(t)|

2] <∞ for k = I,R1, R2.

Let A := AI ×AR1 ×AR2 be the set including all admissible market strategies, where Aj is the
set of admissible strategies for participant k = I,R1, R2. Note that {l1, l2, ξ1, ξ2} ∈ A if and only if
{l1, l2} ∈ AI , ξ1 ∈ AR1 and ξ2 ∈ AR2.

In this paper, we discuss this problem under a time-inconsistent mean-variance framework. Our
aim is to find the optimal strategies to maximize the expectations and minimize the variance of the
insurer’s and reinsurers’ respective terminal surpluses. We denote Et,x[·] := E[·|Ft, X(t) = x] and
Vart,x(·) := Var(·|Ft, X(t) = x), where X(t) = x stands for (XI(t), XR1(t), XR2(t)) = (xI , xR1, xR2).
Let γI > 0, γR1 > 0 and γR2 > 0, which reflect their attitudes towards the trade-off between risk and
return. Then, we can obtain the objective function as follows:

Definition 2.2. Given {l1, l2, ξ1, ξ2} ∈ A , the insurer’s objective at time t is

JI(t, xI ; l1, l2, ξ1, ξ2) = Et,xI [XI(T )]− γI
2

Vart,xI (XI(T )), (4)

reinsurer 1’s objective at time t is

JR1(t, xR1; l1, ξ1) = Et,xR1
[XR1(T )]− γR1

2
Vart,xR1

(XR1(T )), (5)

and reinsurer 2’s objective at time t is

JR2(t, xR2; l2, ξ2) = Et,xR2
[XR2(T )]− γR2

2
Vart,xR2

(XR2(T )). (6)

Now, we use the Stackelberg game to model the relationship between the insurer and reinsurers.
Being aware of the insurer’s response, reinsurers play the leadership role and determine the reinsurance
premium first. In contrast, the insurer as a price taker, would be the follower in the game. And it has
the right to choose a reinsurance plan under the given reinsurance premium. The competition between
two reinsurers is described by the Nash game. Reinsurer 1 and reinsurer 2 are two oligarchs in the
reinsurance market. They compete with each other and simultaneously determine their reinsurance
premiums. Specifically, given reinsurance premium strategies ξ1 ∈ AR1 and ξ2 ∈ AR2 for reinsurer 1
and reinsurer 2, the insurer can choose an optimal reinsurance strategy {l∗1(·; ξ1, ξ2), l

∗
2(·; ξ1, ξ2)} ∈ AI
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based upon her objective. In anticipation of the insurer’s choice of the optimal reinsurance strategy,
two reinsurers simultaneously determine their reinsurance premium strategies ξ∗1 and ξ∗2 . The search
process of the equilibrium reinsurance and reinsurance price on the reinsurance market can be described
by the following three steps.

1. In the first step, we search for an admissible reinsurance strategy to optimize the insurer’s
objective function for any reinsurer strategy set {ξ1, ξ2} ∈ AR1 × AR2. The insurer’s optimal
strategy is associated with the given reinsurance premium strategies ξ1 and ξ2 and is denoted
by {l∗1(·; ξ1, ξ2), l

∗
2(·; ξ1, ξ2)}. The insurer’s response {l∗1(·; ξ1, ξ2), l

∗
2(·; ξ1, ξ2)} is available to both

reinsurers and will be used by the reinsurers to design their own strategies in the following steps.

2. In the second step, we find the reinsurance premium strategies ξ∗1(·; ξ2) and ξ∗2(·; ξ1) for the two
reinsurers when the other reinsurer’s strategy is given and the insurer’s choice is the optimal
reinsurance strategy we found in the first step.

3. In the third step, we find the equilibrium reinsurance premium strategies for the Nash game
between two reinsurers, which is {ξ∗1 , ξ

∗
2} from the reaction function we obtain in the second step.

Then, we substitute the equilibrium reinsurance strategy into {l∗1(·; ξ1, ξ2), l
∗
2(·; ξ1, ξ2)} to obtain

the equilibrium solution for the Stackelberg game {l∗1(·), l∗2(·)}.

3 Time-consistent strategy

3.1 Equilibrium strategy

Since the dynamic mean-variance problem of (4)-(6) is essentially time inconsistent, we cannot
directly use Bellman’s optimality principle. To overcome this difficulty, we address this problem within
a game-theoretic framework and search for the Nash subgame perfect equilibrium strategy, which was
pioneered by Strotz (1956). We can derive the extended Hamilton-Jacobi-Bellman equation following
the method introduced by Björk et al. (2017).

Definition 3.1. Given the objective function JI , JR1 and JR2, the equilibrium reinsurance strategy
and equilibrium reinsurance premium strategy are defined as following.

(i) Given ξ1 ∈ AR1 and ξ2 ∈ AR2, let {l∗1(·; ξ1, ξ2), l
∗
2(·; ξ1, ξ2)} ∈ AI be a reinsurance strategy

associated with a given (ξ1, ξ2). For any (t, y) ∈ [0, T ]× R+ and fixed real number ε > 0, define
the associated reinsurance strategy as:

lεj(s, y; ξ1, ξ2) =

l̃j(y), s ∈ [t, t+ ε)

l∗j (s, y; ξ1, ξ2), s ∈ [t+ ε, T )
, j = 1, 2,

where l̃1 : R+ → R+ and l̃2 : R+ → R+ are functions such that {lε1(·; ξ1, ξ2), l
ε
2(·; ξ1, ξ2)} ∈ AI . If

lim
ε→0

+
inf

1

ε
[JI(t, xI ; l

∗
1(·; ξ1, ξ2), l

∗
2(·; ξ1, ξ2), ξ1, ξ2)− JI(t, xI ; l

ε
1(·; ξ1, ξ2), l

ε
2(·; ξ1, ξ2), ξ1, ξ2)] > 0,
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then, {l∗1(·; ξ1, ξ2), l∗2(·; ξ1, ξ2)} is called the equilibrium reinsurance strategy associated with ξ1 and
ξ2, and VI(t, xI ; ξ1, ξ2) = JI(t, xI ; l

∗
1(·; ξ1, ξ2), l

∗
2(·; ξ1, ξ2), ξ1, ξ2) is the equilibrium value function

for insurer associated with (ξ1, ξ2).

(ii) Given ξ2 ∈ A2, let ξ
∗
1(·; ξ2) ∈ AR1 be a reinsurance premium strategy for reinsurer 1 associated

with a given ξ2. For any t ∈ [0, T ] and fixed real number ε > 0, define the associated reinsurance
premium strategy as:

ξε1(s; ξ2) =

ξ̃1, s ∈ [t, t+ ε)

ξ∗1(s; ξ2), s ∈ [t+ ε, T )

where ξ̃1 is a real number such that ξε1(·; ξ2) ∈ AR1. If

lim
ε→0

+
inf

1

ε

[
JR1(t, xR1; l

∗
1(·; ξ∗1(·; ξ2), ξ2), ξ

∗
1(·; ξ2))− JR1(t, xR1; l

∗
1(·; ξε1(·; ξ2), ξ

ε
1(·; ξ2))

]
≥ 0,

then we call ξ∗1(·; ξ2) the equilibrium reinsurance premium strategy for reinsurer 1 associated with
ξ2 and VR1(t, xR1; ξ2) = JR1(t, xR1; l

∗
1(·; ξ∗1(·; ξ2), ξ2), ξ

∗
1(·; ξ2)) the equilibrium value function for

reinsurer 1 associated with ξ2.

(iii) Given ξ1 ∈ AR1, let ξ
∗
2(·; ξ1) ∈ AR2 be the reinsurance premium strategy for reinsurer 2 associated

with a given ξ1. For any t ∈ [0, T ] and fixed real number ε > 0, define the associated reinsurance
premium strategy as:

ξε2(s; ξ1) =

ξ̃2, s ∈ [t, t+ ε)

ξ∗2(s, ; ξ1), s ∈ [t+ ε, T )

where ξ̃2 is a real number such that ξε2(·; ξ1) ∈ AR2. If

lim
ε→0

+
inf

1

ε

[
JR2(t, xR2; l

∗
2(·; ξ1, ξ

∗
2(·; ξ1)), ξ

∗
2(·; ξ1))− JR2(t, xR2; l

∗
2(·; ξ1, ξ

ε
2(·; ξ1), ξ

ε
2(·; ξ1))

]
≥ 0,

then we call ξ∗2(·; ξ1) the equilibrium reinsurance premium strategy for reinsurer 2 associated with
ξ1 and VR2(t, xR2; ξ1) = JR2(t, xR2; l

∗
2(·; ξ1, ξ

∗
2(·; ξ1)), ξ

∗
2(·; ξ1)) the equilibrium value function for

reinsurer 2 associated with ξ1.

(iv) (ξ∗1(·), ξ∗2(·)) are called the equilibrium reinsurance premium strategies if ξ∗1(·) is the equilibrium
reinsurance premium strategy for reinsurer 1 associated with ξ∗2(·) and ξ∗2(·) is the equilibrium
reinsurance premium strategy for reinsurer 1 associated with ξ∗1(·). More specifically, (ξ∗1(·), ξ∗2(·))
are called the equilibrium reinsurance premium strategies ifξ

∗
1(t) = ξ∗1(t; ξ∗2(t)),

ξ∗2(t) = ξ∗2(t; ξ∗1(t)),
for all t ∈ [0, T ]. (7)

Then, the equilibrium reinsurance strategy for the insurer is (l∗1, l
∗
2) = (l∗1(·; ξ∗1 , ξ

∗
2), l∗2(·; ξ∗1 , ξ

∗
2)).

Moreover, VI(t, xI) = VI(t, xI ; ξ
∗
1 , ξ
∗
2), VR1(t, xR1) = VR1(t, xR1; ξ∗2) and VR2(t, xR2) = VR2(t, xR2; ξ∗1)

are the equilibrium value functions for insurer, reinsurer 1 and reinsurer 2, respectively.
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The value functions of insurer (I), reinsurer 1 (R1) and reinsurer 2 (R2) can also be written as
VI(t, xI) = JI(t, xI ; l

∗
1, l
∗
2, ξ
∗
1 , ξ
∗
2), VR1(t, xR1) = JR1(t, xR1; l

∗
1, ξ
∗
1) and VR2(t, xR2) = JR2(t, xR2; l

∗
2, ξ
∗
2).

Proposition 3.1. The objective functions of the insurer and reinsurers (4)-(6) are separable in their
own surpluses and independent of the opponent’s. Moreover, neither the insurer’s nor reinsurers’
optimal strategies depend on the surpluses.

The proof of proposition 3.1 is in appendix A.1. However, to use the equilibrium strategy defined in
definition 3.1 and derive the extended HJB equation for the value function, we need to demonstrate that
the optimal strategies of the insurer and reinsurers are state independent, which is true according to
proposition 3.1. Intuitively, it is difficult for one participant to acquire and make decisions based on the
information on the surplus levels of other participants. Therefore, we can concentrate on equilibrium
strategies given in definition 3.1 and apply the extended HJB equation to solve the mean-variance
problem (4)-(6).

3.2 The extended HJB equation

First, for an arbitrary function ϕ : [0, T ] × R → R with partial derivatives ∂ϕ(t,x)
∂t and ∂ϕ(t,x)

∂x , we
define the infinitesimal generators for the insurer’s and two reinsurers’ optimal problems acting on ϕ as

L l1,l2,ξ1,ξ2
I [ϕ(t, xI)] =

∂ϕ(t, xI)

∂t
+
∂ϕ(t, xI)

∂x
[c− p1(t)− p2(t) + ρI(t)xI ]

+

∫
R+

[ϕ(t, xI − (y − l1(t, y)− l2(t, y)))− ϕ(t, xI)] v(dy),
(8)

L l1,ξ1
R1 [ϕ(t, xR1)] =

∂ϕ(t, xR1)

∂t
+
∂ϕ(t, xR1)

∂x

[∫
R+
l1(t, y)v(dy) + ξ1(t)

∫
R+
l21(t, y)v(dy)

+ ρR1(t)xR1

]
+

∫
R+

[ϕ(t, l1(t, y))− ϕ(t, xR1)] v(dy),

(9)

L l2,ξ2
R2 [ϕ(t, xR2)] =

∂ϕ(t, xR2)

∂t
+
∂ϕ(t, xR2)

∂x

[
(1 + ξ2(t))

∫
R+
l2(t, y)v(dy) + ρR2(t)xR2

]
+

∫
R+

[ϕ(t, xR2 − l2(t, y))− ϕ(t, xR2)] v(dy).

(10)

Theorem 3.1 (Verification Theorem).

(i) Given {ξ1, ξ2} ∈ AR1 ×AR2, if there exist real value function VI(t, xI ; ξ1, ξ2) ∈ C
1,2([0, T ]× R+)

and real function g(t, xI ; ξ1, ξ2) ∈ C
1,2([0, T ]× R+) satisfying the following conditions:

sup
{l1,l2}∈AI

{
HJBI(t, xI ; l1, l2, ξ1, ξ2)

}
= 0,

L l
∗
1 ,l
∗
2 ,ξ1,ξ2

I [gI(t, xI ; ξ1, ξ2)] = 0,

VI(T, xI ; ξ1, ξ2) = xI ,

gI(T, xI ; ξ1, ξ2) = xI ,

(11)
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where

HJBI(t, xI ; l1, l2, ξ1, ξ2) := L l1,l2,ξ1,ξ2
I [VI(t, xI ; ξ1, ξ2)]−

γI
2

L l1,l2,ξ1,ξ2
I [g2I (t, xI ; ξ1, ξ2)]

+ γIgI(t, xI ; ξ1, ξ2)L
l1,l2,ξ1,ξ2
I [gI(t, xI ; ξ1, ξ2)]

{l∗1(t, y; ξ1, ξ2), l
∗
2(t, y; ξ1, ξ2)} := arg sup

{l1,l2}∈AI

HJBI(t, xI ; l1, l2, ξ1, ξ2),

then VI(t, xI ; ξ1, ξ2) = JI(t, xI ; l
∗
1(·; ξ1, ξ2), which is the equilibrium value function for insurer

associated with ξ1 and ξ2, and {l
∗
1(·; ξ1, ξ2), l

∗
2(·; ξ1, ξ2)} is the equilibrium reinsurance strategy

associated with ξ1 and ξ2.

(ii) Given ξ2 ∈ AR2, if there exist real value function VR1(t, xR1; ξ2) ∈ C
1,2([0, T ] × R+) and real

function gR1(t, xR1; ξ2) ∈ C
1,2([0, T ]× R+) satisfying the following conditions:

sup
ξ1∈AR1

{
HJBR1(t, xR1; l

∗
1(· : ξ1, ξ2), ξ1)

}
= 0,

L
l
∗
1(·;ξ

∗
1 ,ξ2),ξ

∗
1

R1 [gR1(t, xR1; ξ2)] = 0,

VR1(T, xR1; ξ2) = xR1,

gR1(T, xR1; ξ2) = xR1,

(12)

where

HJBR1(t, xR1; l
∗
1(· : ξ1, ξ2), ξ1) := L

l
∗
1(·:ξ1,ξ2),ξ1
R1 [VR1(t, xR1; ξ2)]−

γR1

2
L

l
∗
1(·:ξ1,ξ2),ξ1
R1 [g2R1(t, xR1; ξ2)]

+ γR1gR1(t, xR1; ξ2)L
l
∗
1(·:ξ1,ξ2),ξ1
R1 [gR1(t, xR1; ξ2)]

ξ∗1(·; ξ2), := arg sup
ξ1∈AR1

{
HJBR1(t, xR1; l

∗
1(· : ξ1, ξ2), ξ1)

}
,

then VR1(t, xR1; ξ2) = JR1
(t, xR1; l∗1(·; ξ∗1(·; ξ2), ξ2), ξ∗1(·; ξ2)), which is the equilibrium value function

for reinsurer 1 associated with ξ2, and ξ
∗
1(·; ξ2) is the equilibrium reinsurance premium strategy

for reinsurer 1 associated with ξ2.

(iii) Given ξ1 ∈ AR1, if there exist real value function VR2(t, xR2; ξ1) ∈ C
1,2([0, T ] × R+) and real

function gR2(t, xR2; ξ1) ∈ C
1,2([0, T ]× R+) satisfying the following conditions:

sup
ξ1∈AR2

{
HJBR2(t, xR2; l

∗
2(· : ξ1, ξ2), ξ2)

}
= 0

L
l
∗
2(·:ξ

∗
1 ,ξ2),ξ2

R2 [gR2(t, xR2; ξ1)] = 0,

VR2(T, xR2; ξ1) = xR2,

gR2(T, xR2; ξ1) = xR2,

(13)

where

HJBR2(t, xR2; l
∗
2(· : ξ1, ξ2), ξ2) := L

l
∗
2(·:ξ1,ξ2),ξ2
R2 [VR2(t, xR2; ξ1)]−

γR2

2
L

l
∗
2(·:ξ1,ξ2),ξ2
R2 [g2R2(t, xR2; ξ1)]

+ γR2gR2(t, xR2; ξ1)L
l
∗
2(·:ξ1,ξ2),ξ2
R2 [gR2(t, xR2; ξ1)]

ξ∗2(·; ξ1) := arg sup
ξ1∈AR2

{
HJBR2(t, xR2; l

∗
2(· : ξ1, ξ2), ξ2)

}
,
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then VR2(t, xR2; ξ1) = JR2
(t, xR2; l∗2(·; ξ1, ξ

∗
2(·; ξ1)), ξ∗2(·; ξ1)), which is the equilibrium value function

for reinsurer 2 associated with ξ1, and ξ
∗
2(·; ξ1) is the equilibrium reinsurance premium strategy

for reinsurer 1 associated with ξ1.

The proof of the verification theorem can be adapted from Theorem 5.2 of Björk et al. (2017) and
Theorem 4.1 of Björk & Murgoci (2010). Here, we omit the proof.

If there exist (ξ∗1 , ξ
∗
2) ∈ AR1×AR2 such that ξ∗1(t) = ξ∗1(t, ξ∗2(t)) and ξ∗2(t) = ξ∗2(t, ξ∗1(t)) for all t ∈ [0, T ],

i.e., equation (7) is satisfied, then (ξ∗1 , ξ
∗
2) is the equilibrium reinsurance premium strategy. The value

functions for the insurer and two reinsurers are VI(t, xI) = VI(t, xI ; ξ
∗
1 , ξ
∗
2), VR1(t, xR1) = VR1(t, xR1; ξ∗2)

and VR2(t, xR2) = VR2(t, xR2; ξ
∗
1), respectively.

3.3 Solution

Proposition 3.2. Given (ξ1, ξ2) ∈ AR1 ×AR2, the associated equilibrium reinsurance strategies are

l∗1(t, y; ξ1, ξ2) =

q(t)y, y ≤ d(t),

ξ2(t)
2ξ1(t)

, y > d(t),
and l∗2(t, y; ξ1, ξ2) =

0, y ≤ d(t),

y − d(t), y > d(t),

where

q(t) =
γIe

∫ T
t ρI(s)ds

2ξ1(t) + γIe
∫ T
t ρI(s)ds

and d(t) =
ξ2(t)

γIe
∫ T
t ρ(s)ds

+
ξ2(t)

2ξ1(t)
. (14)

The proof is given in Appendix A.2. And the proof has promised that {l∗1, l
∗
2} is admissible.

The results in Proposition 3.2 can be interpreted in the following way. At time t, the insurer holds a
proportion reinsurance offered by reinsurer 1 and a stop-loss reinsurance offered by reinsurer 2. In the
proportion reinsurance, the ceding proportion is q(t) and the limit is ξ2(t)

2ξ1(t)
. The stop-loss reinsurance is

characterized by the deductible d(t). Suppose that the realized claim amount for the insurer at time t
is y. If y is no larger than d(t), the insurer retains the amount of (1− q(t))y and transfers the amount
of q(t)y to reinsurer 1. If y is strictly larger than d(t), the insurer transfers the amount of ξ2(t)

2ξ1(t)
to

reinsurer 1 and y − d(t) to reinsurer 2 and thus retains the amount of ξ2(t)

γIe
∫T
t ρ(s)ds

.

Given (ξ1, ξ2), suppose that the associated equilibrium value functions of two reinsurers are

VR1(t, xR1; ξ2) = e
∫ T
t ρR1(s)dsxR1 +BR1(t) and VR2(t, xR2; ξ1) = e

∫ T
t ρR2(s)dsxR2 +BR2(t).

Moreover, we assume

gR1(t, xR1; ξ2) = e
∫ T
t ρR1(s)dsxR1 + bR1(t) and gR2(t, xR2; ξ1) = e

∫ T
t ρR2(s)dsxR2 + bR2(t).

Then, the extended HJB equation (12)-(13) can be written as

sup
ξ1∈AR1

{
B′R1(t) + e

∫ T
t ρR1(s)ds

[ ∫
R+

[ξ1(t)−
γR1

2
e
∫ T
t ρR1(s)ds]l∗21 (t, y; ξ1, ξ2)v( dy)

]}
, (15)
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and

sup
ξ2∈AR2

{
B′R2(t) + e

∫ T
t ρR2(s)ds

[ ∫
R+
ξ2(t)l

∗
2(t, y; ξ1, ξ2)−

γR2

2
e
∫ T
t ρR2(s)dsl∗22 (t, y; ξ1, ξ2)v( dy)

]}
. (16)

The equilibrium reinsurance premium strategies for two reinsurers, given their competitor’s premium
strategy, can be calculated from the first-order conditions of (15) and (16), which are

ΛR1(ξ1, ξ2) =

2q(t)

γR1e
∫ T
t ρR1(s)ds

γIe
∫ T
t ρI(s)ds

+ 1

− 1

∫ d(t)

0
y2 dF (y) + d(t)2

γR1e
∫ T
t ρR1(s)ds

ξ1
− 1

S(d(t))

= 0 (17)

and

ΛR2(ξ1, ξ2) =

1 +
γR2e

∫ T
t ρR2(s)ds

γIe
∫ T
t ρI(s)ds

+
γR2e

∫ T
t ρR2(s)ds

2ξ1

∫ +∞

d(t)
(y − d(t)) dF (y)− d(t)S(d(t))

= 0, (18)

where S(d(t)) = 1− F (d(t)) and functions q(t) and d(t) are defined in (14). We can find ξ∗1(·; ξ2) from
(17) and ξ∗2(·; ξ1) from (18). If we can find a pair of (ξ∗1 , ξ

∗
2) satisfying both (17) and (18), they are

indeed the equilibrium reinsurance premium at time t. From the equilibrium reinsurance premium
strategy {ξ∗1(t), ξ∗2(t)}, we can further obtain the equilibrium reinsurance strategy {l∗1(·), l∗2(·)} for the
insurer by substituting {ξ∗1(t), ξ∗2(t)} into {l∗1(t, y; ξ1, ξ2), l

∗
2(t, y; ξ1, ξ2)}.

4 Example: optimal reinsurance strategies under exponential claims

In section 3, we obtain the explicit form of {l∗1(t, y; ξ1, ξ2), l
∗
2(t, y; ξ1, ξ2)}. However, without in-

formation on the distribution of Yi, we cannot solve (17) and (18) to obtain an explicit form of
{ξ∗1(·; ξ2), ξ

∗
2(·; ξ1)}. To better understand the reinsurance premium strategies in a market equilibrium,

in this section, we impose the assumption that the claim sizes Yi, i = 1, 2, ..., follow the exponential
distribution with expectation 1/β, i.e., Yi ∼ exp(β).1 Then, we explicitly determine {ξ∗1(·), ξ∗2(·)}.

In the first attempt, we assume that ξ∗1(·) and ξ∗2(·) can take any positive values, i.e., ξ∗i : [0, T ]→
[0,∞), i = 1, 2. Fix t ∈ [0, T ]; we can determine the reaction functions ξ1(·; ξ2) and ξ2(·; ξ1) from (17)
and (18) for two reinsurers given the strategy of their competitor. Consequently, ξ∗1(t) and ξ∗2(t) are
the coordinates of the intersection point of the two reaction functions. Since ξ∗1(t) and ξ∗2(t) can be
determined in the same way for all t ∈ [0, T ], in the following discussion, we focus on a given time t.
For notational simplicity, we denote d = d(ξ1, ξ2) > 0,

Cj =
γje

∫ T
t ρj(s) ds

γIe
∫ T
t ρI(s) ds

, j = R1, R2

BR1 =
γR1e

∫ T
t ρR1(s) ds

ξ1
and BR2 =

γR2e
∫ T
t ρR2(s) ds

ξ2
.

1
Yi has density function f(y) = βe

−βy, distribution function F (y) = 1− e
−βy, expectation 1/β, and variance 1/β

2.
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As we have f(y) = βe−βy, we can rewrite (17) as the following quadratic equation of BR1[
BR1(2CR1 + 1)− 2CR1

2CR1 +BR1

]
e(βd) +BR1 − 1 = 0, where e(βd) :=

[
2

(βd)2
eβd −

(
1 +

2

βd
+

2

(βd)2

)]
.

Since −2CR1(e(βd) + 1) < 0, the above equation has one positive and one negative solution. In
particular, the positive solution is BR1 = G(βd), where G(x) = g(e(x)) and

g(x) :=
1

2

(
−[2CR1 − 1 + x(2CR1 + 1)] +

√
[2CR1 − 1 + x(2CR1 + 1)]2 + 8CR1(x+ 1)

)
.

Now, we establish a relation between ξ1 and ξ2 from (17) via the following equation:

BR1 =
γR1e

∫ T
t ρR1(s) ds

ξ1
= G(βd) = G

(
βξ2

γIe
∫ T
t ρI(s) ds

+
βξ2
2ξ1

)
. (19)

Lemma 4.1. The function e(x) is continuously increasing in x ∈ (0,+∞), g(x) is continuously
decreasing in x ∈ (0,+∞), and G(x) is continuously decreasing in x ∈ (0,+∞).

Since G(x) is a decreasing function, its inverse function G−1 is well defined. Now, we represent ξ2 as
a function of ξ1, say h1(ξ1), from (19) as

ξ2 = h1(ξ1) :=
γIe

∫ T
t ρI(s) dsG−1(γR1e

∫T
t ρR1(s) ds

ξ1
)

β

(
γIe

∫T
t ρI (s) ds

2ξ1
+ 1

) .

It is clear that h1(ξ1) is decreasing in ξ1 because G−1(·) is a decreasing function.

Similarly, under the exponential distribution, (18) implies

ξ2 = h2(ξ1) :=
γIe

∫ T
t ρI(s) ds

β

1 + CR2 −
γIe

∫ T
t ρI(s) ds

γIe
∫ T
t ρ(s) ds + 2ξ1

 (20)

and h2(ξ1) is increasing in ξ1.

Proposition 4.1. Assume that Yi ∼ exp(β), i = 1, 2, ..., and ξj(t) ≥ 0 for j = 1, 2 and t ∈ [0, T ].
There exists a unique positive solution (ξ̄1, ξ̄2) such that ξ̄2 = h1(ξ̄1) = h2(ξ̄1).

By the previous analysis, for each t ∈ [0, T ], we can obtain a unique equilibrium solution of (ξ̄1, ξ̄2)

regardless of their constraints. However, large values of ξ̄1 and ξ̄2 might lack practical meaning because
they represent the amount of risk loading added into reinsurance premiums. In our second attempt, we
impose the constraints of ξ1(t) and ξ2(t) introduced in Definition 2.1 and then solve the equilibrium
reinsurance premium strategy (ξ∗1(·), ξ∗2(·)). Specifically, we assume that ξ1(t) ∈ [θβ, ηβ] and ξ2 ∈ [θ, η].
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Proposition 4.2. Assume that Yi ∼ exp(β), i = 1, 2, ..., ξ1(t) ∈ [θβ, ηβ], and ξ2(t) ∈ [θ, η]. The
equilibrium reinsurance premium strategies for two reinsurers are

ξ∗1(t) = max
{
θβ, min

{
h−1 (ξ∗2(t)), ηβ

}}
,

ξ∗2(t) =


max {θ, min {h2(θβ), η}} , if ξ̄1(t) < θβ

max
{
θ, min

{
ξ̄2(t), η

}}
, if θβ ≤ ξ̄1(t) ≤ ηβ

max {θ, min{h2(ηβ), η}} , if ηβ < ξ̄1(t).

We compare the equilibrium solution without constraints with the boundary for the strategies.
We can roughly understand the formula in the following way. When the equilibrium solution ξ̄1(t)

for reinsurer 1 exceeds ηβ, the maximal reinsurance premium that reinsurer 1 should charge is ηβ.
Reinsurer 2’s corresponding strategy is h2(ηβ), which maximizes reinsurer 2’s objective function
given reinsurer 1’s strategy ηβ. Considering the limitation of ξ2(t), reinsurer 2 can only set its
relative security loading strategy between θ and η. To optimize its objective, the premium strategy
for reinsurer 2 is max {θ, min{h2(ηβ), η}}. Then, reinsurer 1 decides its strategy again, which is
max

{
θβ, min

{
h−1 (max {θ, min{h2(ηβ), η}}), ηβ

}}
. Now, (ξ∗1(t), ξ∗2(t)) can satisfy (7), and they reach

an equilibrium at time t. When the equilibrium solution ξ̄1(t) satisfies θβ ≤ ξ̄1(t) ≤ ηβ, then we
only need to consider the constraint for reinsurer 2’s corresponding strategy. Therefore, reinsurer 2’s
premium strategy would be max

{
θ, min

{
ξ̄2(t), η

}}
. To reach equilibrium, reinsurer 1 will change

its premium strategy into max
{
θβ, min

{
h−1 (max

{
θ, min

{
ξ̄2(t), η

}}
), ηβ

}}
. In the last case, when

ξ̄1(t) < θβ, the best strategy that reinsurer 1 can choose is θβ. Therefore, reinsurer 2’s corresponding
strategy is max {θ, min {h2(θβ), η}}. Then, reinsurer 1 decides her strategy again to reach equilibrium,
which is max

{
θβ, min

{
h−1 (max {θ, min {h2(θβ), η}}), ηβ

}}
.

5 Numerical results and discussion

In this section, we provide a numerical example for the theoretical results we obtained in section 4.
We choose the parameter values t = 0, T = 8, α = 1, σ = 1, θ = 0.1, η = 0.9, λ = 1, β = 1, xI = 1,
xR1 = 10, xR2 = 10, ρI(t) = 0.1, ρR1(t) = 0.1, ρR2(t) = 0.1, γI = 0.1, γR1 = 0.1, and γR2 = 0.1.
Therefore, we will provide the numerical results of equilibrium strategies for the three parties at time 0.
It is worth noting that the initial asset of the reinsurer is set to be 10 times as much as that of the
insurer to distinguish the reinsurers’ and the insurer’s solvency abilities in the market. We can also see
that the safe loading for two reinsurers is limited in [0.1, 0.9]. Next, we will draw a phase diagram to
illustrate the equilibrium strategies of three participants. Finally, we allow ρI(t), ρR1(t), ρR2(t), γI , γR1,
and γR2 to be free parameters and fix the rest to examine the sensitivity of the equilibrium strategies.
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5.1 The equilibrium strategies

We can obtain the phase diagram by plotting the functions h1(ξ1) and h2(ξ1) in Figure 1, where the
intersection point of two curves is the equilibrium reinsurance premium strategy. We clearly find from
the phase diagram that the equilibrium reinsurance premium strategies of reinsurer 1 and reinsurer 2
at time 0 are ξ∗1(0) = 0.28269 and ξ∗2(0) = 0.38225, respectively. The reinsurance plan of the insurer
is illustrated in Figure 2. If the total claim is less than d = 2.3936, the insurer retains 71.75% of the
total claim, and reinsurer 1 covers 28.25%. If the total claim exceeds d = 2.3936, the indemnity paid by
insurer is at most 1.7175, and reinsurer 1 covers 0.6761 of the total claim. The excess of loss reinsurance
signed with reinsurer 2 will pay all of the remaining indemnity.
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Figure 1: The phase diagram of ξ1 and ξ2
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Figure 2: The equilibrium reinsurance strategy

In Figure 3, we provide the trajectory of the equilibrium reinsurance premiums ξ∗1(t) and ξ∗2(t). As
shown in the figure, the premium strategies for two reinsurers ξ1(t) and ξ2(t) both decrease over time. It
is reasonable that the reinsurers charge less to cover the risk as the uncertainty of the policy is reduced
over time. Moreover, the prices for the two reinsurance policies do not change substantially over the
time period according to Figure 4. For the policy with an 8-year lifetime and for one unit of claim Y ,
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the price of the proportion reinsurance ranges between 0.2621 and 0.2437, and the price of the excess of
loss reinsurance varies from 0.1262 to 0.1070. The proportion ceded to reinsurer 1 is quite stable at
approximately 0.2825, and the deductible is almost equal to 2.3936 from time 0 to 8. This means that
the reinsurance policies signed with two reinsurers do not need to change considerably over time.
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Figure 3: Equilibrium reinsurance premi-
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Figure 4: Reinsurance price

5.2 Sensitivity analysis

In this section, we discuss the effect of the expectation of claim, denoted by µ := 1/β, risk attitude
for each company (γI , γR1 and γR2) and credit interest rate (ρI , ρR1 and ρR2) on the equilibrium
strategies. As the equilibrium strategies do not change substantially over time, we only consider the
equilibrium strategies for two reinsurers at times 0, ξ∗1(0) and ξ∗2(0). To simplify the expression, we use
ξ∗1 and ξ∗2 to represent ξ∗1(0) and ξ∗2(0), respectively.

W first analyse the effect of µ which is the expectation of a claim. In this section, we denote by (ξ̂1, ξ̂2)

the intersection point of functions h1 and h2. Figure 5 shows the change of ξ̂1 and ξ̂2 with respect to µ.
Generally, ξ̂1 (resp. ξ̂2) decreases (resp. increases) with µ in a non-strictly sense. Meanwhile, given a
value of µ, the admissible range for (ξ∗1 , ξ

∗
2) is [0.1/µ, 0.9/µ]× [0, 1, 0.9]. In what follows, we analyze the

optimal solution according to the range of µ.

1. For 0.3537 ≤ µ ≤ 2.3546, i.e., 0.4247 ≤ β ≤ 2.8269, the safe loading constraint is not binding
because (ξ̂1, ξ̂2) ∈ [0.1/µ, 0.9/µ] × [0, 1, 0.9]. Therefore, ξ∗i = ξ̂i, i = 1, 2, and the equilibrium
solution lies in the admissible region as show in Figure 1. By substituting (20) into (19), we
can see that ξ∗1 does not depend on β. It implies ξ∗1 = 0.28269. In addition, ξ∗2 decreases with β
according to (20), which lead to ξ∗2 increases with µ.

2. If µ ≥ 3.1837, i.e., β ≤ 0.3141, as shown in Figure 7, the intersection point (ξ̂1, ξ̂2) is outside and
upper-right to the admissible region. Consequently, the equilibrium solution is the upper-right
corner of admissible region, that is (ξ∗1 , ξ

∗
2) = (βη, η) = (0.9/µ, 0.9).
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3. For 2.3546 ≤ µ ≤ 3.1837, i.e., 0.3141 ≤ β ≤ 0.4247, the intersection point (ξ̂1, ξ̂2) is outside the
admissible region. Precisely, ξ̂1 ∈ [0.1/µ, 0.9/µ] satisfies the safe loading condition, while ξ̂2 > 0.9

does not. Therefore, we have to limit ξ∗2 = 0.9 in the equilibrium solution. It follows that the
equilibrium solution is on the boundary of the admissible region, as shown in Figure 8.

4. If 0.2525 ≤ µ ≤ 0.3537, i.e., 2.8269 ≤ β ≤ 3.9610, the intersection point (ξ̂1, ξ̂2) is outside the
admissible region. Precisely 0.1 ≤ ξ̂2 ≤ 0.9 satisfies the condition, while ξ̂1 < 0.1/µ does not.
Thus, the equilibrium point (ξ∗1 , ξ

∗
2) is given by ξ∗1 = βθ = 0.1/µ and ξ∗2 = h2(ξ

∗
1) as shown in

Figure 9.

5. In the last case where µ ≤ 0.2525, i.e., β ≥ 3.9610, the intersection point (ξ̂1, ξ̂2) lies in the lower
left of the admissible region. Therefore, the equilibrium solution is (ξ∗1 , ξ

∗
2) = (βθ, θ) = (0.1/µ, 0.1),

as shown in Figure 10.

Figure 6 shows the effect of µ on the equilibrium reinsurance strategy, which is the proportion q (see
left y axis) ceded to reinsurers 1 and deductible d (see right y axis) for reinsurer 2. The proportion
ceded to reinsurers is decreasing with ξ1; thus, q is increasing with µ. The proposition rises sharply from
1 to 28.25% before µ = 0.3537 and then goes to a platform. Finally, it rises slowly to 1 as µ→ +∞.
Because d is increasing with ξ2 and decreasing with ξ1, the deduction is also increasing as the claim
risk increases. As µ→∞, d→ +∞.
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Figure 5: Effect of µ on ξ∗1 and ξ∗2

µ

0 1 2 3 4 5 6 7 8

q

0

0.1

0.2

0.3

0.4

0.5

d

0

2

4

6

8

10

q
d

Figure 6: Effect of µ on q and d

Next, we show the how the risk attitudes (γI , γR1 and γR2) and interest rates (ρI , ρR1 and ρR2) affect
the equilibrium reinsurance (q and d) and premium (ξ∗1 and ξ∗2) in Figure 11 to 18, in which the x axis
is used for the value of risk aversion degree or the value of interest for different companies. We state
that when we analyse the effect of one parameter, we will keep the other parameters as the value we set
in the basic case. As the risk aversion and interest rate for each party always appear in the same place
when we compute the equilibrium strategy, they will have the same effect on the equilibrium strategies.

Figures 11 and 12 illustrate that both ξ∗1 and ξ∗2 will increase no matter which company become
more risk aversion. Furthermore, we can also see that the change of reinsurer 1’s risk attitude has the
greatest impact on ξ∗1 . And γI and γR2 do not affect ξ∗1 too much. Risk attitude of reinsurer 2 has
greater impact on ξ∗2 than insurance company and reinsurer 1. But γI changes ξ∗2 more than γR1. As
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Figure 11: Effect of risk attitudes on ξ∗1
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Figure 13: Effect of interest rate on ξ∗1
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Figure 14: Effect of risk attitudes on ξ∗2
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γI/γR1/γR2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

d

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

γ
I

γ
R1

γ
R2

Figure 16: Effect of risk attitude on d
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Figure 17: Effect of interest rate on q
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Figure 18: Effect of interest rate on d

the interest rates always appear together with corresponding risk attitude, the interest rates have the
same effect as risk attitudes, which is shown in 13 to 14. The increasing of risk attitude or interest rate
will increase the cost of the insurance product or reinsurance product for companies. Therefore, for the
insurance company, it has higher demand for reinsurance which leads to an increase in the reinsurance
premium. For the reinsurance companies, they will reduce the supply for reinsurance which also lead to
higher price for reinsurance in the market.

Figures 15 to 18 show that the ceded proportion q increases with γI and ρI , decreasing with γR1, ρR1

and γR2, ρR2. And the deductible d increases with γR2 and ρR2, decreasing with γR1, ρR1 and γI , ρI .
Furthermore, we can see that the risk attitude and interest rate affect both q and d strongly. On the
other hand, the risk attitude and interest rate for reinsurance companies will affect their own product
more. We can see that γR1 and ρR1 influence q more, while γR2 and ρR2 influence d more. For the same
reason we mentioned before, the higher risk aversion and interest rate of insurance company increase
the demand for reinsurance. Thus, q increases and d decreases. While the higher γR1 and ρR1 reduce
the supply of proposition reinsurance, the demand for stop-loss reinsurance increases; thus, both q and
d decreases. However, the higer γR2 and ρR2 will lead to greater d and smaller q. It means that the
reinsurance market will provide less reinsurance to insurance company in this case. Thus, the insurer
needs to retain more risk itself.
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6 Conclusion

In this paper, we studied the stochastic differential reinsurance game between one insurer and two
reinsurers under the Stackelberg game and Nash game. The insurer accepts risk from the insured with
the expected value premium and cedes part of risk to two reinsurers who apply different premium
principles. We study the reinsurance strategies of the insurer and reinsurance premium strategies of
reinsurers under the mean-variance framework. The insurer will sign proposition reinsurance with
reinsurer 1 who uses the variance premium principle and exceeds the loss reinsurance contract with
reinsurer 2 who applies the expected value premium. The ceded proportion and deduction depend on
the equilibrium reinsurance premium from the price competition between the two reinsurers. We also
provided the solution of the equilibrium premium strategies of price competition when the claim size
follows an exponential distribution through a phase diagram. The numerical analysis of this example
shows how the equilibrium premium strategy changes with time, the claim size distribution, risk aversion
and the interest rate, which can help us to understand the change in reinsurance price in the market.
The model can be further extended to general cases with more insurers and more reinsurers.

A Appendix

A.1 Proof of Proposition 3.1

Proof. The proof follows from Basak & Chabakauri (2010). From the surplus process (1)-(3), we
calculate the objective function for the insurer and reinsurers as follows:

JI(t, xI ; l1, l2, ξ1, ξ2) = Et,xI [XI(T )]− γI
2

Vart,xI (XI(T )) (21)

= e
∫ T
t ρI(u)duxI + Et,xI

[∫ T

t

∫
R+
e
∫ T
s ρI(u)du

[
y − l1(s, y)− l2(s, y) + θy − ξ1(s)l

2
1(s, y)

− ξ2(s)l2(s, y)− γI
2
e
∫ T
s ρ(u)du(y − l1(s, y)− l2(s, y))2

]
v(dy) ds

]
− γI

2
Vart,x

(∫ T

t

∫
R+
e
∫ T
s ρI(u)du

[
(1 + θ)y − l1(s, y)− (1 + ξ2(s))l2(s, y)− ξ1(s)l

2
1(s, y)

]
v(dy) ds

)
,

JR1(t, xR1; l1, ξ1) = Et,xR1
[XR1(T )]− γR1

2
Vart,xR1

(XR1(T )) (22)

= e
∫ T
t ρR1(u)duxR1 + Et,xR1

[∫ T

t

∫
R+
e
∫ T
s ρR1(u)du

[
l1(s, y) + ξ1(s)l

2
1(s, y)− γR1

2
e
∫ T
s ρR1(u)dul21(s, y)

]
v(dy) ds

]
− γR1

2
Vart,x

(∫ T

t

∫
R+
e
∫ T
s ρR1(u)du[l1(s, y) + ξ1(s)l

2
1(s, y)]v(dy) ds

)
,
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and

JR2(t, xR2; l2, ξ2) = Et,xR2
[XR2(T )]− γR2

2
Vart,xR2

(XR2(T )) (23)

= e
∫ T
t ρR2(u)duxR2 + Et,xR2

[∫ T

t

∫
R+
e
∫ T
s ρR2(u)du

[
(1 + ξ2(s))l2(s, y)− γR2

2
e
∫ T
s ρR2(u)dul22(s, y)

]
v(dy) ds

]
− γR2

2
Vart,x

(∫ T

t

∫
R+
e
∫ T
s ρR2(u)du(1 + ξ2(s))l2(s, y)v(dy) ds

)
.

As we can see, {l1(·), l2(·), ξ1(·), ξ2(·)} only appears in the expectation and variance terms of the objection
function, and those terms are independent of xI , xR1 and xR2. Thus, their optimal trajectories must
be state independent. Therefore, each player’s objection function only depends on its own surplus and
is independent of others’. The same for the value function. �

A.2 Proof of Proposition 3.2

Proof. For notational simplicity, denote V ∗I (t, xI) = VI(t, xI ; ξ1, ξ2) and g∗I (t, xI) = g(t, xI ; ξ1, ξ2).
Combining this with (8), the extended HJB equation for VI(t, xI ; ξ1, ξ2) in (11) is

HJBI(t, xI ; l1, l2, ξ1, ξ2)

= sup
{l1,l2}∈AI

{
L l1,l2,ξ1,ξ2
I [V ∗I (t, xI)]−

γI
2

L l1,l2,ξ1,ξ2
I [(g∗I )

2(t, xI)] + γIg
∗
I (t, xI)L

l1,l2,ξ1,ξ2
I [g∗I (t, xI)]

}
= sup
{l1,l2}∈AI

{
L l1,l2,ξ1,ξ2
I [V ∗I (t, xI)]−

γI
2

[
2g∗I (t, xI)

∂g∗I (t, xI)

∂t
+ 2g∗I (t, xI)

∂g∗I (t, xI)

∂xI
(c− p1(t)− p2(t) + ρI(t)xI)

]
+
γI
2

∫
R+

(g∗I )
2(t, xI − y + l1 + l2)− (g∗I )

2(t, xI)v(dv)

+ γIg
∗
I (t, xI)

[
∂g∗I (t, xI)

∂t
+
∂g∗I (t, xI)

∂xI
(c− p1(t)− p2(t) + ρI(t)xI)

]
+ γIg

∗
I (t, xI)

∫
R+
g∗I [t, xI − (y − l1 − l2)]− g

∗
I (t, xI)v(dy)

}
= sup
{l1,l2}∈AI

{
L l1,l2,ξ1,ξ2
I [V ∗I (t, xI)]−

γI
2

∫
R+

[
g∗I (t, xI − (y − l1 − l2))− g

∗
I (t, xI)

]2
v(dv)

}
= sup
{l1,l2}∈AI

{
∂V ∗I (t, xI)

∂t
+
∂V ∗I (t, xI)

∂xI

(∫
R+

[y − l1 − l2 + θy − ξ1(t)l
2
1 − ξ2(t)l2]v(dy) + ρI(t)xI

)
+

∫
R+
V ∗I [t, xI − (y − l1 − l2)]− V

∗
I (t, xI)v(dy)− γI

2

∫
R+

[
g∗I (t, xI − (y − l1 − l2))− g

∗
I (t, xI)

]2
v(dv)

}
.
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Since we can write V ∗I (t, xI) = e
∫ T
t ρI(s) dsxI +BI(t) and g

∗
I (t, xI) = e

∫ T
t ρI(s) dsxI +bI(t), by substituting

them into the equation above, we obtain

HJBI(t, xI ; l1, l2, ξ1, ξ2)

= sup
{l1,l2}∈AI

{
− ρ(t)e

∫ T
t ρI(s) dsxI +B′I(t) + e

∫ T
t ρI(s) ds

[ ∫
R+

[y − l1 − l2 + θy − ξ1(t)l
2
1 − ξ2(t)l2]v(dy) + ρI(t)xI

]
−
∫
R+

[e
∫ T
t ρI(s) ds(y − l1 − l2)]v(dy)− γI

2

∫
R+
e2

∫ T
t ρI(s) ds(y − l1 − l2)

2v(dy)

}
=B′I(t) + e

∫ T
t ρI(s) ds sup

{l1,l2}∈AI

{∫
R+
θy − ξ1(t)l

2
1 − ξ2(t)l2 −

γI
2
e
∫ T
t ρI(s) ds(y − l1 − l2)

2v(dy)

}
. (24)

By the first-order condition, we have−2ξ1(t)l1 + γIe
∫ T
t ρI(s) ds(y − l1 − l2) = 0,

−ξ2(t) + γIe
∫ T
t ρI(s) ds(y − l1 − l2) = 0,

(25)

which further implies

l1 =
γIe

∫ T
t ρI(s) ds

2ξ1(t) + γIe
∫ T
t ρI(s) ds

(y − l2) = y − l2 −
ξ2(t)

γIe
∫ T
t ρI ds

Recall that l1 ∈ [0, y], l2 ∈ [0, y] and l1 + l2 ∈ [0, y]. If y > ξ2(t)

γIe
∫T
t ρ(s)ds

+ ξ2(t)
2ξ1(t)

, the two first-order

conditions can be satisfied by 
l1 = ξ2(t)

2ξ1(t)
,

l2 = y − ξ2(t)
ξ1(t)
− ξ2(t)

γIe
∫T
t ρI(s) ds

.

If y ≤ ξ2(t)

γIe
∫T
t ρ(s) ds

+ ξ2(t)
2ξ1(t)

, the


l1 = γIe

∫T
t ρI (s) ds

2ξ1(t)+γIe
∫T
t ρI(s) ds

y,

l2 = 0,

leads to the supreme in (24).

Combining the two solutions above, we have the equilibrium reinsurance strategies associated with ξ1
and ξ2 as

l∗1(t, y; ξ, ξ2) =

q(t)y, y ≤ d(t)

ξ2(t)
2ξ1(t)

, y > d(t)
, and l∗2(t, y; ξ1, ξ2) =

0, y ≤ d(t)

y − d(t), y > d(t)

where q(t) = γIe
∫T
t ρI (s) ds

2ξ1(t)+γIe
∫T
t ρI (s) ds

and d(t) = ξ2(t)

γIe
∫T
t ρ(s) ds

+ ξ2(t)
2ξ1(t)

.

�
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A.3 Proof of Lemma 4.1

Proof. First note that

e(x) =
2

x2

∞∑
n=1

1

n!
xn −

(
1 +

2

x
+

2

x2

)
=

2

x2
+

2

x
+ 1 +

2

x2

∞∑
n=3

1

n!
xn −

(
1 +

2

x
+

2

x2

)
=

∞∑
n=1

2

(n+ 2)!
xn.

Obviously, e(x) is strictly increasing in x for positive x. Thus, we have limx→0 e(x) = 0, limx→+∞ e(x) =

+∞. In short, e : (0,+∞)→ (0,+∞) is a continuous and strictly increasing function.

The monotonicity of g(x) can be obtained by determining its derivative as follows:

2g′(x) =− (2CR1 + 1) +
2[2CR1 − 1 + x(2CR1 + 1)](2CR1 + 1) + 8CR1

2

[
(2CR1 − 1 + x(2CR1 + 1))

2
+ 8CR1(x+ 1)

]− 1
2

=(2CR1 + 1)

−1 +
2CR1 − 1 + x(2CR1 + 1) + 4CR1

(2CR1+1)(
[2CR1 − 1 + x(2CR1 + 1)]2 + 8CR1(x+ 1)

) 1
2


=(2CR1 + 1)

−1 +

(
[2CR1 − 1 + x(2CR1 + 1)]2 + [ 4CR1

(2CR1+1) ]
2 + 2[2CR1 − 1 + x(2CR1 + 1)] 4CR1

(2CR1+1)

[2CR1 − 1 + x(2CR1 + 1)]2 + 8CR1(x+ 1)

) 1
2


=(2CR1 + 1)

−1 +

 [2CR1 − 1 + x(2CR1 + 1)]2 + 8CR1x+ [ 4CR1

(2CR1+1) ]
2 + 8CR1(2CR1−1)

2CR1+1

[2CR1 − 1 + x(2CR1 + 1)]2 + 8CR1x+ 8CR1

 1
2



=(2CR1 + 1)

−1 +

 [2CR1 − 1 + x(2CR1 + 1)]2 + 8CR1x+ 8CR1

[
[ 2CR1

(2CR1+1)
2 ] + (2CR1−1)

2CR1+1

]
[2CR1 − 1 + x(2CR1 + 1)]2 + 8CR1x+ 8CR1


1
2


=(2CR1 + 1)

−1 +

 [2CR1 − 1 + x(2CR1 + 1)]2 + 8CR1x+ 8CR1

[
4C

2
R1+2CR1−1
(2CR1+1)

2

]
[2CR1 − 1 + x(2CR1 + 1)]2 + 8CR1x+ 8CR1


1
2


=(2CR1 + 1)

−1 +

 [2CR1 − 1 + x(2CR1 + 1)]2 + 8CR1x+ 8CR1

[
1− 2CR1+2

(2CR1+1)
2

]
[2CR1 − 1 + x(2CR1 + 1)]2 + 8CR1x+ 8CR1


1
2


Because 2CR1+2

(2CR1+1)
2 > 0, we have

[2CR1 − 1 + x(2CR1 + 1)]2 + 8CR1x+ 8CR1

[
1− 2CR1+2

(2CR1+1)
2

]
[2CR1 − 1 + x(2CR1 + 1)]2 + 8CR1x+ 8CR1

] < 1, for x > 0.

This implies that g′(x) < 0. Furthermore, we have

lim
x→0

g(x) =
−(2CR1 − 1) +

√
(2CR1 − 1)2 + 8CR1

2
and lim

x→+∞
g(x) =

2CR1

2CR1 + 1
.

Thus, g : (0,+∞)→
(

2CR1
2CR1+1 ,

[
−(2CR1 − 1) +

√
(2CR1 − 1)2 + 8CR1

]
/2

)
is continuous and strictly

decreasing.
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Combining the monotonicity and continuity of both e(·) and g(·), we obtain that G(x) := g(e(x)) is
a continuous and strictly decreasing function. �

A.4 Proof of Proposition 4.1

Proof. From the definition

h1(ξ1) =
γIe

∫ T
t ρI(s) dsG−1(γR1e

∫T
t ρR1(s) ds

ξ1
)

β

(
1 + γIe

∫T
t ρI (s) ds

2ξ1

) and h2(ξ1) =
γIe

∫ T
t ρI(s) ds

β

1 + CR2 −
γIe

∫ T
t ρI(s) ds

γIe
∫ T
t ρI(s) ds + 2ξ1

 ,

we have

h1(ξ1)− h2(ξ1) =
γIe

∫ T
t ρI(s) ds

β

G−1(γR1e
∫T
t ρR1(s) ds

ξ1
)

1 + γIe
∫T
t ρI (s) ds

2ξ1

− (1 + CR2) +

γIe
∫T
t ρI (s) ds

2ξ1

γIe
∫T
t ρI (s) ds

2ξ1
+ 1


=

γIe
∫ T
t ρI(s) ds

β

(
1 + γIe

∫T
t ρI (s) ds

2ξ1

)
G−1(γR1e

∫ T
t ρR1(s) ds

ξ1
)− (1 + CR2)

1 +
γIe

∫ T
t ρI(s) ds

2ξ1

+
γIe

∫ T
t ρI(s) ds

2ξ1



=
γIe

∫ T
t ρI(s) ds

β

(
1 + γIe

∫T
t ρI (s) ds

2ξ1

)
G−1(γR1e

∫ T
t ρR1(s) ds

ξ1
)− CR2

γIe
∫ T
t ρI(s) ds

2ξ1
− (1 + CR2)

 .

It is known from Lemma 4.1 that G(·) is a continuous and strictly decreasing function, and

lim
x→0

G(x) = lim
x→0

g(e(x)) = lim
x→0

g(x) =
−(2CR1 − 1) +

√
(2CR1 − 1)2 + 8CR1

2
,

lim
x→+∞

G(x) = lim
x→+∞

g(e(x)) = lim
x→+∞

g(x) =
2CR1

2CR1 + 1
.

Thus, G−1 : ( 2CR1
2CR1+1 ,

−(2CR1−1)+
√

(2CR1−1)
2
+8CR1

2 )→ (0,+∞) is also a continuous and strictly decreas-
ing function.

As ξ1 →
γR1e

∫T
t ρR1(s) ds(2CR1+1)

2CR1
, we have γR1e

∫T
t ρR1(s) ds

ξ1
→ 2CR1

2CR1+1 and γIe
∫T
t ρI (s)ds

2ξ1
→ 1

2CR1+1 . Thus,

G−1(
γR1e

∫ T
t ρR1(s) ds

ξ1
)− CR2

γIe
∫ T
t ρI(s) ds

2ξ1
→∞.

As ξ1 →
2γR1e

∫T
t ρR1(s) ds√

(2CR1−1)
2
+8CR1−(2CR1−1)

, we have γR1e
∫T
t ρR1(s) ds

ξ1
→

√
(2CR1−1)

2
+8CR1−(2CR1−1)

2 and γIe
∫T
t ρI (s) ds

2ξ1
→√

(2CR1−1)
2
+8CR1−(2CR1−1)
4CR1

. Thus,

G−1(
γR1e

∫ T
t ρR1(s) ds

ξ1
)− CR2

γIe
∫ T
t ρI(s) ds

2ξ1
→ −

√
(2CR1 − 1)2 + 8CR1 − (2CR1 − 1)

4CR1
CR2 < 0.
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Together with the facts that 1 + CR2 > 0 and h1(ξ1) − h2(ξ2) is a continuously decreasing func-
tion on its domain, we conclude that h1(ξ1) − h2(ξ2) crosses the x-axis from above on the interval

( 2γR1e
∫T
t ρR1(s) ds√

(2CR1−1)
2
+8CR1−(2CR1−1)

, γR1e
∫T
t ρR1(s) ds(2CR1+1)

2CR1
). Therefore, there exists ξ̄1 such that h1(ξ̄1)−h2(ξ̄2),

i.e., h1(ξ̄1) = h2(ξ̄2) = ξ̄2. �
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